Metamath Proof Explorer


Theorem xrnemnf

Description: An extended real other than minus infinity is real or positive infinite. (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Assertion xrnemnf A*A−∞AA=+∞

Proof

Step Hyp Ref Expression
1 pm5.61 AA=+∞A=−∞¬A=−∞AA=+∞¬A=−∞
2 elxr A*AA=+∞A=−∞
3 df-3or AA=+∞A=−∞AA=+∞A=−∞
4 2 3 bitri A*AA=+∞A=−∞
5 df-ne A−∞¬A=−∞
6 4 5 anbi12i A*A−∞AA=+∞A=−∞¬A=−∞
7 renemnf AA−∞
8 pnfnemnf +∞−∞
9 neeq1 A=+∞A−∞+∞−∞
10 8 9 mpbiri A=+∞A−∞
11 7 10 jaoi AA=+∞A−∞
12 11 neneqd AA=+∞¬A=−∞
13 12 pm4.71i AA=+∞AA=+∞¬A=−∞
14 1 6 13 3bitr4i A*A−∞AA=+∞