Metamath Proof Explorer


Theorem xrnepnf

Description: An extended real other than plus infinity is real or negative infinite. (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Assertion xrnepnf A*A+∞AA=−∞

Proof

Step Hyp Ref Expression
1 pm5.61 AA=−∞A=+∞¬A=+∞AA=−∞¬A=+∞
2 elxr A*AA=+∞A=−∞
3 df-3or AA=+∞A=−∞AA=+∞A=−∞
4 or32 AA=+∞A=−∞AA=−∞A=+∞
5 2 3 4 3bitri A*AA=−∞A=+∞
6 df-ne A+∞¬A=+∞
7 5 6 anbi12i A*A+∞AA=−∞A=+∞¬A=+∞
8 renepnf AA+∞
9 mnfnepnf −∞+∞
10 neeq1 A=−∞A+∞−∞+∞
11 9 10 mpbiri A=−∞A+∞
12 8 11 jaoi AA=−∞A+∞
13 12 neneqd AA=−∞¬A=+∞
14 13 pm4.71i AA=−∞AA=−∞¬A=+∞
15 1 7 14 3bitr4i A*A+∞AA=−∞