Metamath Proof Explorer


Theorem mnfnepnf

Description: Minus and plus infinity are different. (Contributed by David A. Wheeler, 8-Dec-2018)

Ref Expression
Assertion mnfnepnf −∞+∞

Proof

Step Hyp Ref Expression
1 pnfnemnf +∞−∞
2 1 necomi −∞+∞