| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pm5.61 |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ) ∨ 𝐴 = -∞ ) ∧ ¬ 𝐴 = -∞ ) ↔ ( ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ) ∧ ¬ 𝐴 = -∞ ) ) |
| 2 |
|
elxr |
⊢ ( 𝐴 ∈ ℝ* ↔ ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞ ) ) |
| 3 |
|
df-3or |
⊢ ( ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞ ) ↔ ( ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ) ∨ 𝐴 = -∞ ) ) |
| 4 |
2 3
|
bitri |
⊢ ( 𝐴 ∈ ℝ* ↔ ( ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ) ∨ 𝐴 = -∞ ) ) |
| 5 |
|
df-ne |
⊢ ( 𝐴 ≠ -∞ ↔ ¬ 𝐴 = -∞ ) |
| 6 |
4 5
|
anbi12i |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞ ) ↔ ( ( ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ) ∨ 𝐴 = -∞ ) ∧ ¬ 𝐴 = -∞ ) ) |
| 7 |
|
renemnf |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ≠ -∞ ) |
| 8 |
|
pnfnemnf |
⊢ +∞ ≠ -∞ |
| 9 |
|
neeq1 |
⊢ ( 𝐴 = +∞ → ( 𝐴 ≠ -∞ ↔ +∞ ≠ -∞ ) ) |
| 10 |
8 9
|
mpbiri |
⊢ ( 𝐴 = +∞ → 𝐴 ≠ -∞ ) |
| 11 |
7 10
|
jaoi |
⊢ ( ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ) → 𝐴 ≠ -∞ ) |
| 12 |
11
|
neneqd |
⊢ ( ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ) → ¬ 𝐴 = -∞ ) |
| 13 |
12
|
pm4.71i |
⊢ ( ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ) ↔ ( ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ) ∧ ¬ 𝐴 = -∞ ) ) |
| 14 |
1 6 13
|
3bitr4i |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞ ) ↔ ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ) ) |