Metamath Proof Explorer


Theorem pnfnemnf

Description: Plus and minus infinity are different elements of RR* . (Contributed by NM, 14-Oct-2005)

Ref Expression
Assertion pnfnemnf +∞ ≠ -∞

Proof

Step Hyp Ref Expression
1 pnfxr +∞ ∈ ℝ*
2 pwne ( +∞ ∈ ℝ* → 𝒫 +∞ ≠ +∞ )
3 1 2 ax-mp 𝒫 +∞ ≠ +∞
4 3 necomi +∞ ≠ 𝒫 +∞
5 df-mnf -∞ = 𝒫 +∞
6 4 5 neeqtrri +∞ ≠ -∞