Metamath Proof Explorer


Theorem pwne

Description: No set equals its power set. The sethood antecedent is necessary; compare pwv . (Contributed by NM, 17-Nov-2008) (Proof shortened by Mario Carneiro, 23-Dec-2016)

Ref Expression
Assertion pwne ( 𝐴𝑉 → 𝒫 𝐴𝐴 )

Proof

Step Hyp Ref Expression
1 pwnss ( 𝐴𝑉 → ¬ 𝒫 𝐴𝐴 )
2 eqimss ( 𝒫 𝐴 = 𝐴 → 𝒫 𝐴𝐴 )
3 2 necon3bi ( ¬ 𝒫 𝐴𝐴 → 𝒫 𝐴𝐴 )
4 1 3 syl ( 𝐴𝑉 → 𝒫 𝐴𝐴 )