Description: A difference is an element of the power set of its minuend. (Contributed by AV, 9-Oct-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | difelpw | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∖ 𝐵 ) ∈ 𝒫 𝐴 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | difss | ⊢ ( 𝐴 ∖ 𝐵 ) ⊆ 𝐴 | |
| 2 | elpw2g | ⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝐴 ∖ 𝐵 ) ∈ 𝒫 𝐴 ↔ ( 𝐴 ∖ 𝐵 ) ⊆ 𝐴 ) ) | |
| 3 | 1 2 | mpbiri | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∖ 𝐵 ) ∈ 𝒫 𝐴 ) |