Metamath Proof Explorer


Theorem pwne

Description: No set equals its power set. The sethood antecedent is necessary; compare pwv . (Contributed by NM, 17-Nov-2008) (Proof shortened by Mario Carneiro, 23-Dec-2016)

Ref Expression
Assertion pwne AV𝒫AA

Proof

Step Hyp Ref Expression
1 pwnss AV¬𝒫AA
2 eqimss 𝒫A=A𝒫AA
3 2 necon3bi ¬𝒫AA𝒫AA
4 1 3 syl AV𝒫AA