Description: No set equals its power set. The sethood antecedent is necessary; compare pwv . (Contributed by NM, 17-Nov-2008) (Proof shortened by Mario Carneiro, 23-Dec-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | pwne | |- ( A e. V -> ~P A =/= A ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwnss | |- ( A e. V -> -. ~P A C_ A ) |
|
2 | eqimss | |- ( ~P A = A -> ~P A C_ A ) |
|
3 | 2 | necon3bi | |- ( -. ~P A C_ A -> ~P A =/= A ) |
4 | 1 3 | syl | |- ( A e. V -> ~P A =/= A ) |