Metamath Proof Explorer


Theorem pwnss

Description: The power set of a set is never a subset. (Contributed by Stefan O'Rear, 22-Feb-2015)

Ref Expression
Assertion pwnss AV¬𝒫AA

Proof

Step Hyp Ref Expression
1 rru ¬xA|¬xxA
2 ssel 𝒫AAxA|¬xx𝒫AxA|¬xxA
3 1 2 mtoi 𝒫AA¬xA|¬xx𝒫A
4 ssrab2 xA|¬xxA
5 elpw2g AVxA|¬xx𝒫AxA|¬xxA
6 4 5 mpbiri AVxA|¬xx𝒫A
7 3 6 nsyl3 AV¬𝒫AA