Step |
Hyp |
Ref |
Expression |
1 |
|
mnflt |
⊢ ( 𝐴 ∈ ℝ → -∞ < 𝐴 ) |
2 |
|
ltpnf |
⊢ ( 𝐴 ∈ ℝ → 𝐴 < +∞ ) |
3 |
1 2
|
jca |
⊢ ( 𝐴 ∈ ℝ → ( -∞ < 𝐴 ∧ 𝐴 < +∞ ) ) |
4 |
|
nltpnft |
⊢ ( 𝐴 ∈ ℝ* → ( 𝐴 = +∞ ↔ ¬ 𝐴 < +∞ ) ) |
5 |
|
ngtmnft |
⊢ ( 𝐴 ∈ ℝ* → ( 𝐴 = -∞ ↔ ¬ -∞ < 𝐴 ) ) |
6 |
4 5
|
orbi12d |
⊢ ( 𝐴 ∈ ℝ* → ( ( 𝐴 = +∞ ∨ 𝐴 = -∞ ) ↔ ( ¬ 𝐴 < +∞ ∨ ¬ -∞ < 𝐴 ) ) ) |
7 |
|
ianor |
⊢ ( ¬ ( -∞ < 𝐴 ∧ 𝐴 < +∞ ) ↔ ( ¬ -∞ < 𝐴 ∨ ¬ 𝐴 < +∞ ) ) |
8 |
|
orcom |
⊢ ( ( ¬ -∞ < 𝐴 ∨ ¬ 𝐴 < +∞ ) ↔ ( ¬ 𝐴 < +∞ ∨ ¬ -∞ < 𝐴 ) ) |
9 |
7 8
|
bitr2i |
⊢ ( ( ¬ 𝐴 < +∞ ∨ ¬ -∞ < 𝐴 ) ↔ ¬ ( -∞ < 𝐴 ∧ 𝐴 < +∞ ) ) |
10 |
6 9
|
bitrdi |
⊢ ( 𝐴 ∈ ℝ* → ( ( 𝐴 = +∞ ∨ 𝐴 = -∞ ) ↔ ¬ ( -∞ < 𝐴 ∧ 𝐴 < +∞ ) ) ) |
11 |
10
|
con2bid |
⊢ ( 𝐴 ∈ ℝ* → ( ( -∞ < 𝐴 ∧ 𝐴 < +∞ ) ↔ ¬ ( 𝐴 = +∞ ∨ 𝐴 = -∞ ) ) ) |
12 |
|
elxr |
⊢ ( 𝐴 ∈ ℝ* ↔ ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞ ) ) |
13 |
|
3orass |
⊢ ( ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞ ) ↔ ( 𝐴 ∈ ℝ ∨ ( 𝐴 = +∞ ∨ 𝐴 = -∞ ) ) ) |
14 |
|
orcom |
⊢ ( ( 𝐴 ∈ ℝ ∨ ( 𝐴 = +∞ ∨ 𝐴 = -∞ ) ) ↔ ( ( 𝐴 = +∞ ∨ 𝐴 = -∞ ) ∨ 𝐴 ∈ ℝ ) ) |
15 |
13 14
|
bitri |
⊢ ( ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞ ) ↔ ( ( 𝐴 = +∞ ∨ 𝐴 = -∞ ) ∨ 𝐴 ∈ ℝ ) ) |
16 |
12 15
|
sylbb |
⊢ ( 𝐴 ∈ ℝ* → ( ( 𝐴 = +∞ ∨ 𝐴 = -∞ ) ∨ 𝐴 ∈ ℝ ) ) |
17 |
16
|
ord |
⊢ ( 𝐴 ∈ ℝ* → ( ¬ ( 𝐴 = +∞ ∨ 𝐴 = -∞ ) → 𝐴 ∈ ℝ ) ) |
18 |
11 17
|
sylbid |
⊢ ( 𝐴 ∈ ℝ* → ( ( -∞ < 𝐴 ∧ 𝐴 < +∞ ) → 𝐴 ∈ ℝ ) ) |
19 |
3 18
|
impbid2 |
⊢ ( 𝐴 ∈ ℝ* → ( 𝐴 ∈ ℝ ↔ ( -∞ < 𝐴 ∧ 𝐴 < +∞ ) ) ) |