| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mnfxr |
⊢ -∞ ∈ ℝ* |
| 2 |
|
xrltnr |
⊢ ( -∞ ∈ ℝ* → ¬ -∞ < -∞ ) |
| 3 |
1 2
|
ax-mp |
⊢ ¬ -∞ < -∞ |
| 4 |
|
breq2 |
⊢ ( 𝐴 = -∞ → ( -∞ < 𝐴 ↔ -∞ < -∞ ) ) |
| 5 |
3 4
|
mtbiri |
⊢ ( 𝐴 = -∞ → ¬ -∞ < 𝐴 ) |
| 6 |
|
mnfle |
⊢ ( 𝐴 ∈ ℝ* → -∞ ≤ 𝐴 ) |
| 7 |
|
xrleloe |
⊢ ( ( -∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ* ) → ( -∞ ≤ 𝐴 ↔ ( -∞ < 𝐴 ∨ -∞ = 𝐴 ) ) ) |
| 8 |
1 7
|
mpan |
⊢ ( 𝐴 ∈ ℝ* → ( -∞ ≤ 𝐴 ↔ ( -∞ < 𝐴 ∨ -∞ = 𝐴 ) ) ) |
| 9 |
6 8
|
mpbid |
⊢ ( 𝐴 ∈ ℝ* → ( -∞ < 𝐴 ∨ -∞ = 𝐴 ) ) |
| 10 |
9
|
ord |
⊢ ( 𝐴 ∈ ℝ* → ( ¬ -∞ < 𝐴 → -∞ = 𝐴 ) ) |
| 11 |
|
eqcom |
⊢ ( -∞ = 𝐴 ↔ 𝐴 = -∞ ) |
| 12 |
10 11
|
imbitrdi |
⊢ ( 𝐴 ∈ ℝ* → ( ¬ -∞ < 𝐴 → 𝐴 = -∞ ) ) |
| 13 |
5 12
|
impbid2 |
⊢ ( 𝐴 ∈ ℝ* → ( 𝐴 = -∞ ↔ ¬ -∞ < 𝐴 ) ) |