Metamath Proof Explorer
Description: Minus infinity is less than or equal to any extended real. (Contributed by NM, 19-Jan-2006)
|
|
Ref |
Expression |
|
Assertion |
mnfle |
⊢ ( 𝐴 ∈ ℝ* → -∞ ≤ 𝐴 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
nltmnf |
⊢ ( 𝐴 ∈ ℝ* → ¬ 𝐴 < -∞ ) |
2 |
|
mnfxr |
⊢ -∞ ∈ ℝ* |
3 |
|
xrlenlt |
⊢ ( ( -∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ* ) → ( -∞ ≤ 𝐴 ↔ ¬ 𝐴 < -∞ ) ) |
4 |
2 3
|
mpan |
⊢ ( 𝐴 ∈ ℝ* → ( -∞ ≤ 𝐴 ↔ ¬ 𝐴 < -∞ ) ) |
5 |
1 4
|
mpbird |
⊢ ( 𝐴 ∈ ℝ* → -∞ ≤ 𝐴 ) |