Metamath Proof Explorer


Theorem mnfle

Description: Minus infinity is less than or equal to any extended real. (Contributed by NM, 19-Jan-2006)

Ref Expression
Assertion mnfle ( 𝐴 ∈ ℝ* → -∞ ≤ 𝐴 )

Proof

Step Hyp Ref Expression
1 nltmnf ( 𝐴 ∈ ℝ* → ¬ 𝐴 < -∞ )
2 mnfxr -∞ ∈ ℝ*
3 xrlenlt ( ( -∞ ∈ ℝ*𝐴 ∈ ℝ* ) → ( -∞ ≤ 𝐴 ↔ ¬ 𝐴 < -∞ ) )
4 2 3 mpan ( 𝐴 ∈ ℝ* → ( -∞ ≤ 𝐴 ↔ ¬ 𝐴 < -∞ ) )
5 1 4 mpbird ( 𝐴 ∈ ℝ* → -∞ ≤ 𝐴 )