Metamath Proof Explorer


Theorem mnfle

Description: Minus infinity is less than or equal to any extended real. (Contributed by NM, 19-Jan-2006)

Ref Expression
Assertion mnfle A*−∞A

Proof

Step Hyp Ref Expression
1 nltmnf A*¬A<−∞
2 mnfxr −∞*
3 xrlenlt −∞*A*−∞A¬A<−∞
4 2 3 mpan A*−∞A¬A<−∞
5 1 4 mpbird A*−∞A