Metamath Proof Explorer


Theorem mnfxr

Description: Minus infinity belongs to the set of extended reals. (Contributed by NM, 13-Oct-2005) (Proof shortened by Anthony Hart, 29-Aug-2011) (Proof shortened by Andrew Salmon, 19-Nov-2011)

Ref Expression
Assertion mnfxr -∞ ∈ ℝ*

Proof

Step Hyp Ref Expression
1 df-mnf -∞ = 𝒫 +∞
2 pnfex +∞ ∈ V
3 2 pwex 𝒫 +∞ ∈ V
4 1 3 eqeltri -∞ ∈ V
5 4 prid2 -∞ ∈ { +∞ , -∞ }
6 elun2 ( -∞ ∈ { +∞ , -∞ } → -∞ ∈ ( ℝ ∪ { +∞ , -∞ } ) )
7 5 6 ax-mp -∞ ∈ ( ℝ ∪ { +∞ , -∞ } )
8 df-xr * = ( ℝ ∪ { +∞ , -∞ } )
9 7 8 eleqtrri -∞ ∈ ℝ*