Metamath Proof Explorer


Theorem mnfxr

Description: Minus infinity belongs to the set of extended reals. (Contributed by NM, 13-Oct-2005) (Proof shortened by Anthony Hart, 29-Aug-2011) (Proof shortened by Andrew Salmon, 19-Nov-2011)

Ref Expression
Assertion mnfxr
|- -oo e. RR*

Proof

Step Hyp Ref Expression
1 df-mnf
 |-  -oo = ~P +oo
2 pnfex
 |-  +oo e. _V
3 2 pwex
 |-  ~P +oo e. _V
4 1 3 eqeltri
 |-  -oo e. _V
5 4 prid2
 |-  -oo e. { +oo , -oo }
6 elun2
 |-  ( -oo e. { +oo , -oo } -> -oo e. ( RR u. { +oo , -oo } ) )
7 5 6 ax-mp
 |-  -oo e. ( RR u. { +oo , -oo } )
8 df-xr
 |-  RR* = ( RR u. { +oo , -oo } )
9 7 8 eleqtrri
 |-  -oo e. RR*