Metamath Proof Explorer


Theorem ngtmnft

Description: An extended real is not greater than minus infinity iff they are equal. (Contributed by NM, 2-Feb-2006)

Ref Expression
Assertion ngtmnft
|- ( A e. RR* -> ( A = -oo <-> -. -oo < A ) )

Proof

Step Hyp Ref Expression
1 mnfxr
 |-  -oo e. RR*
2 xrltnr
 |-  ( -oo e. RR* -> -. -oo < -oo )
3 1 2 ax-mp
 |-  -. -oo < -oo
4 breq2
 |-  ( A = -oo -> ( -oo < A <-> -oo < -oo ) )
5 3 4 mtbiri
 |-  ( A = -oo -> -. -oo < A )
6 mnfle
 |-  ( A e. RR* -> -oo <_ A )
7 xrleloe
 |-  ( ( -oo e. RR* /\ A e. RR* ) -> ( -oo <_ A <-> ( -oo < A \/ -oo = A ) ) )
8 1 7 mpan
 |-  ( A e. RR* -> ( -oo <_ A <-> ( -oo < A \/ -oo = A ) ) )
9 6 8 mpbid
 |-  ( A e. RR* -> ( -oo < A \/ -oo = A ) )
10 9 ord
 |-  ( A e. RR* -> ( -. -oo < A -> -oo = A ) )
11 eqcom
 |-  ( -oo = A <-> A = -oo )
12 10 11 syl6ib
 |-  ( A e. RR* -> ( -. -oo < A -> A = -oo ) )
13 5 12 impbid2
 |-  ( A e. RR* -> ( A = -oo <-> -. -oo < A ) )