Step |
Hyp |
Ref |
Expression |
1 |
|
mnflt |
|- ( A e. RR -> -oo < A ) |
2 |
|
ltpnf |
|- ( A e. RR -> A < +oo ) |
3 |
1 2
|
jca |
|- ( A e. RR -> ( -oo < A /\ A < +oo ) ) |
4 |
|
nltpnft |
|- ( A e. RR* -> ( A = +oo <-> -. A < +oo ) ) |
5 |
|
ngtmnft |
|- ( A e. RR* -> ( A = -oo <-> -. -oo < A ) ) |
6 |
4 5
|
orbi12d |
|- ( A e. RR* -> ( ( A = +oo \/ A = -oo ) <-> ( -. A < +oo \/ -. -oo < A ) ) ) |
7 |
|
ianor |
|- ( -. ( -oo < A /\ A < +oo ) <-> ( -. -oo < A \/ -. A < +oo ) ) |
8 |
|
orcom |
|- ( ( -. -oo < A \/ -. A < +oo ) <-> ( -. A < +oo \/ -. -oo < A ) ) |
9 |
7 8
|
bitr2i |
|- ( ( -. A < +oo \/ -. -oo < A ) <-> -. ( -oo < A /\ A < +oo ) ) |
10 |
6 9
|
bitrdi |
|- ( A e. RR* -> ( ( A = +oo \/ A = -oo ) <-> -. ( -oo < A /\ A < +oo ) ) ) |
11 |
10
|
con2bid |
|- ( A e. RR* -> ( ( -oo < A /\ A < +oo ) <-> -. ( A = +oo \/ A = -oo ) ) ) |
12 |
|
elxr |
|- ( A e. RR* <-> ( A e. RR \/ A = +oo \/ A = -oo ) ) |
13 |
|
3orass |
|- ( ( A e. RR \/ A = +oo \/ A = -oo ) <-> ( A e. RR \/ ( A = +oo \/ A = -oo ) ) ) |
14 |
|
orcom |
|- ( ( A e. RR \/ ( A = +oo \/ A = -oo ) ) <-> ( ( A = +oo \/ A = -oo ) \/ A e. RR ) ) |
15 |
13 14
|
bitri |
|- ( ( A e. RR \/ A = +oo \/ A = -oo ) <-> ( ( A = +oo \/ A = -oo ) \/ A e. RR ) ) |
16 |
12 15
|
sylbb |
|- ( A e. RR* -> ( ( A = +oo \/ A = -oo ) \/ A e. RR ) ) |
17 |
16
|
ord |
|- ( A e. RR* -> ( -. ( A = +oo \/ A = -oo ) -> A e. RR ) ) |
18 |
11 17
|
sylbid |
|- ( A e. RR* -> ( ( -oo < A /\ A < +oo ) -> A e. RR ) ) |
19 |
3 18
|
impbid2 |
|- ( A e. RR* -> ( A e. RR <-> ( -oo < A /\ A < +oo ) ) ) |