| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid |  |-  -oo = -oo | 
						
							| 2 |  | olc |  |-  ( ( -oo = -oo /\ A e. RR ) -> ( ( -oo e. RR /\ A = +oo ) \/ ( -oo = -oo /\ A e. RR ) ) ) | 
						
							| 3 | 1 2 | mpan |  |-  ( A e. RR -> ( ( -oo e. RR /\ A = +oo ) \/ ( -oo = -oo /\ A e. RR ) ) ) | 
						
							| 4 | 3 | olcd |  |-  ( A e. RR -> ( ( ( ( -oo e. RR /\ A e. RR ) /\ -oo  | 
						
							| 5 |  | mnfxr |  |-  -oo e. RR* | 
						
							| 6 |  | rexr |  |-  ( A e. RR -> A e. RR* ) | 
						
							| 7 |  | ltxr |  |-  ( ( -oo e. RR* /\ A e. RR* ) -> ( -oo < A <-> ( ( ( ( -oo e. RR /\ A e. RR ) /\ -oo  | 
						
							| 8 | 5 6 7 | sylancr |  |-  ( A e. RR -> ( -oo < A <-> ( ( ( ( -oo e. RR /\ A e. RR ) /\ -oo  | 
						
							| 9 | 4 8 | mpbird |  |-  ( A e. RR -> -oo < A ) |