Metamath Proof Explorer


Theorem mnflt

Description: Minus infinity is less than any (finite) real. (Contributed by NM, 14-Oct-2005)

Ref Expression
Assertion mnflt
|- ( A e. RR -> -oo < A )

Proof

Step Hyp Ref Expression
1 eqid
 |-  -oo = -oo
2 olc
 |-  ( ( -oo = -oo /\ A e. RR ) -> ( ( -oo e. RR /\ A = +oo ) \/ ( -oo = -oo /\ A e. RR ) ) )
3 1 2 mpan
 |-  ( A e. RR -> ( ( -oo e. RR /\ A = +oo ) \/ ( -oo = -oo /\ A e. RR ) ) )
4 3 olcd
 |-  ( A e. RR -> ( ( ( ( -oo e. RR /\ A e. RR ) /\ -oo 
5 mnfxr
 |-  -oo e. RR*
6 rexr
 |-  ( A e. RR -> A e. RR* )
7 ltxr
 |-  ( ( -oo e. RR* /\ A e. RR* ) -> ( -oo < A <-> ( ( ( ( -oo e. RR /\ A e. RR ) /\ -oo 
8 5 6 7 sylancr
 |-  ( A e. RR -> ( -oo < A <-> ( ( ( ( -oo e. RR /\ A e. RR ) /\ -oo 
9 4 8 mpbird
 |-  ( A e. RR -> -oo < A )