| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simprl |
|- ( ( ( A e. RR* /\ B e. RR ) /\ ( -oo < A /\ A <_ B ) ) -> -oo < A ) |
| 2 |
|
ltpnf |
|- ( B e. RR -> B < +oo ) |
| 3 |
2
|
adantl |
|- ( ( A e. RR* /\ B e. RR ) -> B < +oo ) |
| 4 |
|
rexr |
|- ( B e. RR -> B e. RR* ) |
| 5 |
|
pnfxr |
|- +oo e. RR* |
| 6 |
|
xrlelttr |
|- ( ( A e. RR* /\ B e. RR* /\ +oo e. RR* ) -> ( ( A <_ B /\ B < +oo ) -> A < +oo ) ) |
| 7 |
5 6
|
mp3an3 |
|- ( ( A e. RR* /\ B e. RR* ) -> ( ( A <_ B /\ B < +oo ) -> A < +oo ) ) |
| 8 |
4 7
|
sylan2 |
|- ( ( A e. RR* /\ B e. RR ) -> ( ( A <_ B /\ B < +oo ) -> A < +oo ) ) |
| 9 |
3 8
|
mpan2d |
|- ( ( A e. RR* /\ B e. RR ) -> ( A <_ B -> A < +oo ) ) |
| 10 |
9
|
imp |
|- ( ( ( A e. RR* /\ B e. RR ) /\ A <_ B ) -> A < +oo ) |
| 11 |
10
|
adantrl |
|- ( ( ( A e. RR* /\ B e. RR ) /\ ( -oo < A /\ A <_ B ) ) -> A < +oo ) |
| 12 |
|
xrrebnd |
|- ( A e. RR* -> ( A e. RR <-> ( -oo < A /\ A < +oo ) ) ) |
| 13 |
12
|
ad2antrr |
|- ( ( ( A e. RR* /\ B e. RR ) /\ ( -oo < A /\ A <_ B ) ) -> ( A e. RR <-> ( -oo < A /\ A < +oo ) ) ) |
| 14 |
1 11 13
|
mpbir2and |
|- ( ( ( A e. RR* /\ B e. RR ) /\ ( -oo < A /\ A <_ B ) ) -> A e. RR ) |