Step |
Hyp |
Ref |
Expression |
1 |
|
simprl |
|- ( ( ( A e. RR* /\ B e. RR ) /\ ( -oo < A /\ A <_ B ) ) -> -oo < A ) |
2 |
|
ltpnf |
|- ( B e. RR -> B < +oo ) |
3 |
2
|
adantl |
|- ( ( A e. RR* /\ B e. RR ) -> B < +oo ) |
4 |
|
rexr |
|- ( B e. RR -> B e. RR* ) |
5 |
|
pnfxr |
|- +oo e. RR* |
6 |
|
xrlelttr |
|- ( ( A e. RR* /\ B e. RR* /\ +oo e. RR* ) -> ( ( A <_ B /\ B < +oo ) -> A < +oo ) ) |
7 |
5 6
|
mp3an3 |
|- ( ( A e. RR* /\ B e. RR* ) -> ( ( A <_ B /\ B < +oo ) -> A < +oo ) ) |
8 |
4 7
|
sylan2 |
|- ( ( A e. RR* /\ B e. RR ) -> ( ( A <_ B /\ B < +oo ) -> A < +oo ) ) |
9 |
3 8
|
mpan2d |
|- ( ( A e. RR* /\ B e. RR ) -> ( A <_ B -> A < +oo ) ) |
10 |
9
|
imp |
|- ( ( ( A e. RR* /\ B e. RR ) /\ A <_ B ) -> A < +oo ) |
11 |
10
|
adantrl |
|- ( ( ( A e. RR* /\ B e. RR ) /\ ( -oo < A /\ A <_ B ) ) -> A < +oo ) |
12 |
|
xrrebnd |
|- ( A e. RR* -> ( A e. RR <-> ( -oo < A /\ A < +oo ) ) ) |
13 |
12
|
ad2antrr |
|- ( ( ( A e. RR* /\ B e. RR ) /\ ( -oo < A /\ A <_ B ) ) -> ( A e. RR <-> ( -oo < A /\ A < +oo ) ) ) |
14 |
1 11 13
|
mpbir2and |
|- ( ( ( A e. RR* /\ B e. RR ) /\ ( -oo < A /\ A <_ B ) ) -> A e. RR ) |