| Step | Hyp | Ref | Expression | 
						
							| 1 |  | resum2sqcl.q | ⊢ 𝑄  =  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) ) | 
						
							| 2 |  | simpl | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐴  ≠  0 )  →  𝐴  ∈  ℝ ) | 
						
							| 3 | 2 | resqcld | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐴  ≠  0 )  →  ( 𝐴 ↑ 2 )  ∈  ℝ ) | 
						
							| 4 | 3 | adantr | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐴  ≠  0 )  ∧  𝐵  ∈  ℝ )  →  ( 𝐴 ↑ 2 )  ∈  ℝ ) | 
						
							| 5 |  | simpr | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐴  ≠  0 )  ∧  𝐵  ∈  ℝ )  →  𝐵  ∈  ℝ ) | 
						
							| 6 | 5 | resqcld | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐴  ≠  0 )  ∧  𝐵  ∈  ℝ )  →  ( 𝐵 ↑ 2 )  ∈  ℝ ) | 
						
							| 7 |  | sqgt0 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐴  ≠  0 )  →  0  <  ( 𝐴 ↑ 2 ) ) | 
						
							| 8 | 7 | adantr | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐴  ≠  0 )  ∧  𝐵  ∈  ℝ )  →  0  <  ( 𝐴 ↑ 2 ) ) | 
						
							| 9 |  | sqge0 | ⊢ ( 𝐵  ∈  ℝ  →  0  ≤  ( 𝐵 ↑ 2 ) ) | 
						
							| 10 | 9 | adantl | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐴  ≠  0 )  ∧  𝐵  ∈  ℝ )  →  0  ≤  ( 𝐵 ↑ 2 ) ) | 
						
							| 11 | 4 6 8 10 | addgtge0d | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐴  ≠  0 )  ∧  𝐵  ∈  ℝ )  →  0  <  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) ) ) | 
						
							| 12 | 11 1 | breqtrrdi | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐴  ≠  0 )  ∧  𝐵  ∈  ℝ )  →  0  <  𝑄 ) |