Metamath Proof Explorer


Theorem sqgt0

Description: The square of a nonzero real is positive. (Contributed by NM, 8-Sep-2007)

Ref Expression
Assertion sqgt0
|- ( ( A e. RR /\ A =/= 0 ) -> 0 < ( A ^ 2 ) )

Proof

Step Hyp Ref Expression
1 msqgt0
 |-  ( ( A e. RR /\ A =/= 0 ) -> 0 < ( A x. A ) )
2 recn
 |-  ( A e. RR -> A e. CC )
3 sqval
 |-  ( A e. CC -> ( A ^ 2 ) = ( A x. A ) )
4 2 3 syl
 |-  ( A e. RR -> ( A ^ 2 ) = ( A x. A ) )
5 4 adantr
 |-  ( ( A e. RR /\ A =/= 0 ) -> ( A ^ 2 ) = ( A x. A ) )
6 1 5 breqtrrd
 |-  ( ( A e. RR /\ A =/= 0 ) -> 0 < ( A ^ 2 ) )