Metamath Proof Explorer


Theorem reuanidOLD

Description: Obsolete version of reuanid as of 12-Jan-2025. (Contributed by Peter Mazsa, 12-Feb-2018) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion reuanidOLD ∃!xAxAφ∃!xAφ

Proof

Step Hyp Ref Expression
1 anabs5 xAxAφxAφ
2 1 eubii ∃!xxAxAφ∃!xxAφ
3 df-reu ∃!xAxAφ∃!xxAxAφ
4 df-reu ∃!xAφ∃!xxAφ
5 2 3 4 3bitr4i ∃!xAxAφ∃!xAφ