Metamath Proof Explorer


Theorem reubidva

Description: Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 13-Nov-2004) Reduce axiom usage. (Revised by Wolf Lammen, 14-Jan-2023)

Ref Expression
Hypothesis rmobidva.1 φxAψχ
Assertion reubidva φ∃!xAψ∃!xAχ

Proof

Step Hyp Ref Expression
1 rmobidva.1 φxAψχ
2 1 pm5.32da φxAψxAχ
3 2 eubidv φ∃!xxAψ∃!xxAχ
4 df-reu ∃!xAψ∃!xxAψ
5 df-reu ∃!xAχ∃!xxAχ
6 3 4 5 3bitr4g φ∃!xAψ∃!xAχ