Metamath Proof Explorer


Theorem reubiia

Description: Formula-building rule for restricted existential quantifier (inference form). (Contributed by NM, 14-Nov-2004)

Ref Expression
Hypothesis rmobiia.1 xAφψ
Assertion reubiia ∃!xAφ∃!xAψ

Proof

Step Hyp Ref Expression
1 rmobiia.1 xAφψ
2 1 pm5.32i xAφxAψ
3 2 eubii ∃!xxAφ∃!xxAψ
4 df-reu ∃!xAφ∃!xxAφ
5 df-reu ∃!xAψ∃!xxAψ
6 3 4 5 3bitr4i ∃!xAφ∃!xAψ