Metamath Proof Explorer


Theorem reusng

Description: Restricted existential uniqueness over a singleton. (Contributed by AV, 3-Apr-2023)

Ref Expression
Hypothesis ralsng.1 x=Aφψ
Assertion reusng AV∃!xAφψ

Proof

Step Hyp Ref Expression
1 ralsng.1 x=Aφψ
2 nfv xψ
3 2 1 reusngf AV∃!xAφψ