Metamath Proof Explorer


Theorem 2ralsng

Description: Substitution expressed in terms of two quantifications over singletons. (Contributed by AV, 22-Dec-2019)

Ref Expression
Hypotheses ralsng.1 x=Aφψ
2ralsng.1 y=Bψχ
Assertion 2ralsng AVBWxAyBφχ

Proof

Step Hyp Ref Expression
1 ralsng.1 x=Aφψ
2 2ralsng.1 y=Bψχ
3 1 ralbidv x=AyBφyBψ
4 3 ralsng AVxAyBφyBψ
5 2 ralsng BWyBψχ
6 4 5 sylan9bb AVBWxAyBφχ