Metamath Proof Explorer


Theorem reuxfr

Description: Transfer existential uniqueness from a variable x to another variable y contained in expression A . (Contributed by NM, 14-Nov-2004) (Revised by NM, 16-Jun-2017)

Ref Expression
Hypotheses reuxfr.1 yCAB
reuxfr.2 xB*yCx=A
Assertion reuxfr ∃!xByCx=Aφ∃!yCφ

Proof

Step Hyp Ref Expression
1 reuxfr.1 yCAB
2 reuxfr.2 xB*yCx=A
3 1 adantl yCAB
4 2 adantl xB*yCx=A
5 3 4 reuxfrd ∃!xByCx=Aφ∃!yCφ
6 5 mptru ∃!xByCx=Aφ∃!yCφ