Metamath Proof Explorer


Theorem rexbi

Description: Distribute restricted quantification over a biconditional. (Contributed by Scott Fenton, 7-Aug-2024) (Proof shortened by Wolf Lammen, 3-Nov-2024)

Ref Expression
Assertion rexbi xAφψxAφxAψ

Proof

Step Hyp Ref Expression
1 biimp φψφψ
2 1 ralimi xAφψxAφψ
3 rexim xAφψxAφxAψ
4 2 3 syl xAφψxAφxAψ
5 biimpr φψψφ
6 5 ralimi xAφψxAψφ
7 rexim xAψφxAψxAφ
8 6 7 syl xAφψxAψxAφ
9 4 8 impbid xAφψxAφxAψ