Description: Distribute restricted quantification over a biconditional. (Contributed by Scott Fenton, 7-Aug-2024) (Proof shortened by Wolf Lammen, 3-Nov-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | rexbi | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biimp | |
|
2 | 1 | ralimi | |
3 | rexim | |
|
4 | 2 3 | syl | |
5 | biimpr | |
|
6 | 5 | ralimi | |
7 | rexim | |
|
8 | 6 7 | syl | |
9 | 4 8 | impbid | |