Metamath Proof Explorer


Theorem rexbi

Description: Distribute restricted quantification over a biconditional. (Contributed by Scott Fenton, 7-Aug-2024)

Ref Expression
Assertion rexbi ( ∀ 𝑥𝐴 ( 𝜑𝜓 ) → ( ∃ 𝑥𝐴 𝜑 ↔ ∃ 𝑥𝐴 𝜓 ) )

Proof

Step Hyp Ref Expression
1 ralbi ( ∀ 𝑥𝐴 ( ¬ 𝜑 ↔ ¬ 𝜓 ) → ( ∀ 𝑥𝐴 ¬ 𝜑 ↔ ∀ 𝑥𝐴 ¬ 𝜓 ) )
2 1 notbid ( ∀ 𝑥𝐴 ( ¬ 𝜑 ↔ ¬ 𝜓 ) → ( ¬ ∀ 𝑥𝐴 ¬ 𝜑 ↔ ¬ ∀ 𝑥𝐴 ¬ 𝜓 ) )
3 notbi ( ( 𝜑𝜓 ) ↔ ( ¬ 𝜑 ↔ ¬ 𝜓 ) )
4 3 ralbii ( ∀ 𝑥𝐴 ( 𝜑𝜓 ) ↔ ∀ 𝑥𝐴 ( ¬ 𝜑 ↔ ¬ 𝜓 ) )
5 dfrex2 ( ∃ 𝑥𝐴 𝜑 ↔ ¬ ∀ 𝑥𝐴 ¬ 𝜑 )
6 dfrex2 ( ∃ 𝑥𝐴 𝜓 ↔ ¬ ∀ 𝑥𝐴 ¬ 𝜓 )
7 5 6 bibi12i ( ( ∃ 𝑥𝐴 𝜑 ↔ ∃ 𝑥𝐴 𝜓 ) ↔ ( ¬ ∀ 𝑥𝐴 ¬ 𝜑 ↔ ¬ ∀ 𝑥𝐴 ¬ 𝜓 ) )
8 2 4 7 3imtr4i ( ∀ 𝑥𝐴 ( 𝜑𝜓 ) → ( ∃ 𝑥𝐴 𝜑 ↔ ∃ 𝑥𝐴 𝜓 ) )