Metamath Proof Explorer


Theorem rexim

Description: Theorem 19.22 of Margaris p. 90. (Restricted quantifier version.) (Contributed by NM, 22-Nov-1994) (Proof shortened by Andrew Salmon, 30-May-2011)

Ref Expression
Assertion rexim ( ∀ 𝑥𝐴 ( 𝜑𝜓 ) → ( ∃ 𝑥𝐴 𝜑 → ∃ 𝑥𝐴 𝜓 ) )

Proof

Step Hyp Ref Expression
1 con3 ( ( 𝜑𝜓 ) → ( ¬ 𝜓 → ¬ 𝜑 ) )
2 1 ral2imi ( ∀ 𝑥𝐴 ( 𝜑𝜓 ) → ( ∀ 𝑥𝐴 ¬ 𝜓 → ∀ 𝑥𝐴 ¬ 𝜑 ) )
3 ralnex ( ∀ 𝑥𝐴 ¬ 𝜓 ↔ ¬ ∃ 𝑥𝐴 𝜓 )
4 ralnex ( ∀ 𝑥𝐴 ¬ 𝜑 ↔ ¬ ∃ 𝑥𝐴 𝜑 )
5 2 3 4 3imtr3g ( ∀ 𝑥𝐴 ( 𝜑𝜓 ) → ( ¬ ∃ 𝑥𝐴 𝜓 → ¬ ∃ 𝑥𝐴 𝜑 ) )
6 5 con4d ( ∀ 𝑥𝐴 ( 𝜑𝜓 ) → ( ∃ 𝑥𝐴 𝜑 → ∃ 𝑥𝐴 𝜓 ) )