Metamath Proof Explorer


Theorem rexim

Description: Theorem 19.22 of Margaris p. 90. (Restricted quantifier version.) (Contributed by NM, 22-Nov-1994) (Proof shortened by Andrew Salmon, 30-May-2011)

Ref Expression
Assertion rexim
|- ( A. x e. A ( ph -> ps ) -> ( E. x e. A ph -> E. x e. A ps ) )

Proof

Step Hyp Ref Expression
1 con3
 |-  ( ( ph -> ps ) -> ( -. ps -> -. ph ) )
2 1 ral2imi
 |-  ( A. x e. A ( ph -> ps ) -> ( A. x e. A -. ps -> A. x e. A -. ph ) )
3 ralnex
 |-  ( A. x e. A -. ps <-> -. E. x e. A ps )
4 ralnex
 |-  ( A. x e. A -. ph <-> -. E. x e. A ph )
5 2 3 4 3imtr3g
 |-  ( A. x e. A ( ph -> ps ) -> ( -. E. x e. A ps -> -. E. x e. A ph ) )
6 5 con4d
 |-  ( A. x e. A ( ph -> ps ) -> ( E. x e. A ph -> E. x e. A ps ) )