Metamath Proof Explorer


Theorem rexim

Description: Theorem 19.22 of Margaris p. 90. (Restricted quantifier version.) (Contributed by NM, 22-Nov-1994) (Proof shortened by Andrew Salmon, 30-May-2011)

Ref Expression
Assertion rexim
|- ( A. x e. A ( ph -> ps ) -> ( E. x e. A ph -> E. x e. A ps ) )

Proof

Step Hyp Ref Expression
1 con3
 |-  ( ( ph -> ps ) -> ( -. ps -> -. ph ) )
2 1 ral2imi
 |-  ( A. x e. A ( ph -> ps ) -> ( A. x e. A -. ps -> A. x e. A -. ph ) )
3 2 con3d
 |-  ( A. x e. A ( ph -> ps ) -> ( -. A. x e. A -. ph -> -. A. x e. A -. ps ) )
4 dfrex2
 |-  ( E. x e. A ph <-> -. A. x e. A -. ph )
5 dfrex2
 |-  ( E. x e. A ps <-> -. A. x e. A -. ps )
6 3 4 5 3imtr4g
 |-  ( A. x e. A ( ph -> ps ) -> ( E. x e. A ph -> E. x e. A ps ) )