Metamath Proof Explorer


Theorem rexbida

Description: Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 6-Oct-2003)

Ref Expression
Hypotheses rexbida.1 xφ
rexbida.2 φxAψχ
Assertion rexbida φxAψxAχ

Proof

Step Hyp Ref Expression
1 rexbida.1 xφ
2 rexbida.2 φxAψχ
3 2 pm5.32da φxAψxAχ
4 1 3 exbid φxxAψxxAχ
5 df-rex xAψxxAψ
6 df-rex xAχxxAχ
7 4 5 6 3bitr4g φxAψxAχ