Description: Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 6-Oct-2003)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rexbida.1 | ⊢ Ⅎ 𝑥 𝜑 | |
rexbida.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝜓 ↔ 𝜒 ) ) | ||
Assertion | rexbida | ⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝐴 𝜓 ↔ ∃ 𝑥 ∈ 𝐴 𝜒 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexbida.1 | ⊢ Ⅎ 𝑥 𝜑 | |
2 | rexbida.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝜓 ↔ 𝜒 ) ) | |
3 | 2 | pm5.32da | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝜒 ) ) ) |
4 | 1 3 | exbid | ⊢ ( 𝜑 → ( ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜒 ) ) ) |
5 | df-rex | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝜓 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ) | |
6 | df-rex | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝜒 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜒 ) ) | |
7 | 4 5 6 | 3bitr4g | ⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝐴 𝜓 ↔ ∃ 𝑥 ∈ 𝐴 𝜒 ) ) |