Metamath Proof Explorer


Theorem rexbida

Description: Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 6-Oct-2003)

Ref Expression
Hypotheses rexbida.1 𝑥 𝜑
rexbida.2 ( ( 𝜑𝑥𝐴 ) → ( 𝜓𝜒 ) )
Assertion rexbida ( 𝜑 → ( ∃ 𝑥𝐴 𝜓 ↔ ∃ 𝑥𝐴 𝜒 ) )

Proof

Step Hyp Ref Expression
1 rexbida.1 𝑥 𝜑
2 rexbida.2 ( ( 𝜑𝑥𝐴 ) → ( 𝜓𝜒 ) )
3 2 pm5.32da ( 𝜑 → ( ( 𝑥𝐴𝜓 ) ↔ ( 𝑥𝐴𝜒 ) ) )
4 1 3 exbid ( 𝜑 → ( ∃ 𝑥 ( 𝑥𝐴𝜓 ) ↔ ∃ 𝑥 ( 𝑥𝐴𝜒 ) ) )
5 df-rex ( ∃ 𝑥𝐴 𝜓 ↔ ∃ 𝑥 ( 𝑥𝐴𝜓 ) )
6 df-rex ( ∃ 𝑥𝐴 𝜒 ↔ ∃ 𝑥 ( 𝑥𝐴𝜒 ) )
7 4 5 6 3bitr4g ( 𝜑 → ( ∃ 𝑥𝐴 𝜓 ↔ ∃ 𝑥𝐴 𝜒 ) )