Metamath Proof Explorer


Theorem ralbid

Description: Formula-building rule for restricted universal quantifier (deduction form). (Contributed by NM, 27-Jun-1998)

Ref Expression
Hypotheses ralbid.1 𝑥 𝜑
ralbid.2 ( 𝜑 → ( 𝜓𝜒 ) )
Assertion ralbid ( 𝜑 → ( ∀ 𝑥𝐴 𝜓 ↔ ∀ 𝑥𝐴 𝜒 ) )

Proof

Step Hyp Ref Expression
1 ralbid.1 𝑥 𝜑
2 ralbid.2 ( 𝜑 → ( 𝜓𝜒 ) )
3 2 adantr ( ( 𝜑𝑥𝐴 ) → ( 𝜓𝜒 ) )
4 1 3 ralbida ( 𝜑 → ( ∀ 𝑥𝐴 𝜓 ↔ ∀ 𝑥𝐴 𝜒 ) )