Metamath Proof Explorer


Theorem ralbid

Description: Formula-building rule for restricted universal quantifier (deduction form). (Contributed by NM, 27-Jun-1998)

Ref Expression
Hypotheses ralbid.1
|- F/ x ph
ralbid.2
|- ( ph -> ( ps <-> ch ) )
Assertion ralbid
|- ( ph -> ( A. x e. A ps <-> A. x e. A ch ) )

Proof

Step Hyp Ref Expression
1 ralbid.1
 |-  F/ x ph
2 ralbid.2
 |-  ( ph -> ( ps <-> ch ) )
3 2 adantr
 |-  ( ( ph /\ x e. A ) -> ( ps <-> ch ) )
4 1 3 ralbida
 |-  ( ph -> ( A. x e. A ps <-> A. x e. A ch ) )