Metamath Proof Explorer


Theorem 2ralbida

Description: Formula-building rule for restricted universal quantifier (deduction form). (Contributed by NM, 24-Feb-2004)

Ref Expression
Hypotheses 2ralbida.1 𝑥 𝜑
2ralbida.2 𝑦 𝜑
2ralbida.3 ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐵 ) ) → ( 𝜓𝜒 ) )
Assertion 2ralbida ( 𝜑 → ( ∀ 𝑥𝐴𝑦𝐵 𝜓 ↔ ∀ 𝑥𝐴𝑦𝐵 𝜒 ) )

Proof

Step Hyp Ref Expression
1 2ralbida.1 𝑥 𝜑
2 2ralbida.2 𝑦 𝜑
3 2ralbida.3 ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐵 ) ) → ( 𝜓𝜒 ) )
4 nfv 𝑦 𝑥𝐴
5 2 4 nfan 𝑦 ( 𝜑𝑥𝐴 )
6 3 anassrs ( ( ( 𝜑𝑥𝐴 ) ∧ 𝑦𝐵 ) → ( 𝜓𝜒 ) )
7 5 6 ralbida ( ( 𝜑𝑥𝐴 ) → ( ∀ 𝑦𝐵 𝜓 ↔ ∀ 𝑦𝐵 𝜒 ) )
8 1 7 ralbida ( 𝜑 → ( ∀ 𝑥𝐴𝑦𝐵 𝜓 ↔ ∀ 𝑥𝐴𝑦𝐵 𝜒 ) )