Description: Formula-building rule for restricted universal quantifier (deduction form). (Contributed by NM, 24-Feb-2004)
Ref | Expression | ||
---|---|---|---|
Hypotheses | 2ralbida.1 | |- F/ x ph |
|
2ralbida.2 | |- F/ y ph |
||
2ralbida.3 | |- ( ( ph /\ ( x e. A /\ y e. B ) ) -> ( ps <-> ch ) ) |
||
Assertion | 2ralbida | |- ( ph -> ( A. x e. A A. y e. B ps <-> A. x e. A A. y e. B ch ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2ralbida.1 | |- F/ x ph |
|
2 | 2ralbida.2 | |- F/ y ph |
|
3 | 2ralbida.3 | |- ( ( ph /\ ( x e. A /\ y e. B ) ) -> ( ps <-> ch ) ) |
|
4 | nfv | |- F/ y x e. A |
|
5 | 2 4 | nfan | |- F/ y ( ph /\ x e. A ) |
6 | 3 | anassrs | |- ( ( ( ph /\ x e. A ) /\ y e. B ) -> ( ps <-> ch ) ) |
7 | 5 6 | ralbida | |- ( ( ph /\ x e. A ) -> ( A. y e. B ps <-> A. y e. B ch ) ) |
8 | 1 7 | ralbida | |- ( ph -> ( A. x e. A A. y e. B ps <-> A. x e. A A. y e. B ch ) ) |