Metamath Proof Explorer


Theorem rexbidvALT

Description: Alternate proof of rexbidv , shorter but requires more axioms. (Contributed by NM, 20-Nov-1994) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypothesis rexbidvALT.1 φψχ
Assertion rexbidvALT φxAψxAχ

Proof

Step Hyp Ref Expression
1 rexbidvALT.1 φψχ
2 nfv xφ
3 2 1 rexbid φxAψxAχ