Metamath Proof Explorer


Theorem rexbidva

Description: Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 9-Mar-1997) Reduce dependencies on axioms. (Revised by Wolf Lammen, 6-Dec-2019) (Proof shortened by Wolf Lammen, 10-Dec-2019)

Ref Expression
Hypothesis ralbidva.1 φxAψχ
Assertion rexbidva φxAψxAχ

Proof

Step Hyp Ref Expression
1 ralbidva.1 φxAψχ
2 1 pm5.32da φxAψxAχ
3 2 rexbidv2 φxAψxAχ