Metamath Proof Explorer


Theorem rexbidva

Description: Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 9-Mar-1997) Reduce dependencies on axioms. (Revised by Wolf Lammen, 6-Dec-2019) (Proof shortened by Wolf Lammen, 10-Dec-2019)

Ref Expression
Hypothesis rexbidva.1 ( ( 𝜑𝑥𝐴 ) → ( 𝜓𝜒 ) )
Assertion rexbidva ( 𝜑 → ( ∃ 𝑥𝐴 𝜓 ↔ ∃ 𝑥𝐴 𝜒 ) )

Proof

Step Hyp Ref Expression
1 rexbidva.1 ( ( 𝜑𝑥𝐴 ) → ( 𝜓𝜒 ) )
2 1 pm5.32da ( 𝜑 → ( ( 𝑥𝐴𝜓 ) ↔ ( 𝑥𝐴𝜒 ) ) )
3 2 rexbidv2 ( 𝜑 → ( ∃ 𝑥𝐴 𝜓 ↔ ∃ 𝑥𝐴 𝜒 ) )