Metamath Proof Explorer


Theorem rexbiia

Description: Inference adding restricted existential quantifier to both sides of an equivalence. (Contributed by NM, 26-Oct-1999)

Ref Expression
Hypothesis rexbiia.1 xAφψ
Assertion rexbiia xAφxAψ

Proof

Step Hyp Ref Expression
1 rexbiia.1 xAφψ
2 1 pm5.32i xAφxAψ
3 2 rexbii2 xAφxAψ