Metamath Proof Explorer


Theorem reximdvva

Description: Deduction doubly quantifying both antecedent and consequent, based on Theorem 19.22 of Margaris p. 90. (Contributed by AV, 5-Jan-2022)

Ref Expression
Hypothesis ralimdvva.1 φxAyBψχ
Assertion reximdvva φxAyBψxAyBχ

Proof

Step Hyp Ref Expression
1 ralimdvva.1 φxAyBψχ
2 1 anassrs φxAyBψχ
3 2 reximdva φxAyBψyBχ
4 3 reximdva φxAyBψxAyBχ