Metamath Proof Explorer


Theorem ralimdvv

Description: Deduction doubly quantifying both antecedent and consequent. (Contributed by Scott Fenton, 2-Mar-2025)

Ref Expression
Hypothesis ralimdvv.1 φψχ
Assertion ralimdvv φxAyBψxAyBχ

Proof

Step Hyp Ref Expression
1 ralimdvv.1 φψχ
2 1 adantr φxAyBψχ
3 2 ralimdvva φxAyBψxAyBχ