Metamath Proof Explorer


Theorem reximssdv

Description: Derivation of a restricted existential quantification over a subset (the second hypothesis implies A C_ B ), deduction form. (Contributed by AV, 21-Aug-2022)

Ref Expression
Hypotheses reximssdv.1 φxBψ
reximssdv.2 φxBψxA
reximssdv.3 φxBψχ
Assertion reximssdv φxAχ

Proof

Step Hyp Ref Expression
1 reximssdv.1 φxBψ
2 reximssdv.2 φxBψxA
3 reximssdv.3 φxBψχ
4 2 3 jca φxBψxAχ
5 4 ex φxBψxAχ
6 5 reximdv2 φxBψxAχ
7 1 6 mpd φxAχ