Metamath Proof Explorer


Theorem rexsns

Description: Restricted existential quantification over a singleton. (Contributed by Mario Carneiro, 23-Apr-2015) (Revised by NM, 22-Aug-2018)

Ref Expression
Assertion rexsns xAφ[˙A/x]˙φ

Proof

Step Hyp Ref Expression
1 velsn xAx=A
2 1 anbi1i xAφx=Aφ
3 2 exbii xxAφxx=Aφ
4 df-rex xAφxxAφ
5 sbc5 [˙A/x]˙φxx=Aφ
6 3 4 5 3bitr4i xAφ[˙A/x]˙φ