Metamath Proof Explorer


Theorem rexsngf

Description: Restricted existential quantification over a singleton. (Contributed by NM, 29-Jan-2012) (Revised by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses rexsngf.1 xψ
rexsngf.2 x=Aφψ
Assertion rexsngf AVxAφψ

Proof

Step Hyp Ref Expression
1 rexsngf.1 xψ
2 rexsngf.2 x=Aφψ
3 rexsns xAφ[˙A/x]˙φ
4 1 2 sbciegf AV[˙A/x]˙φψ
5 3 4 bitrid AVxAφψ