Metamath Proof Explorer


Theorem riccrng

Description: A ring is commutative if and only if an isomorphic ring is commutative. (Contributed by SN, 10-Jan-2025)

Ref Expression
Assertion riccrng R𝑟SRCRingSCRing

Proof

Step Hyp Ref Expression
1 riccrng1 R𝑟SRCRingSCRing
2 ricsym R𝑟SS𝑟R
3 riccrng1 S𝑟RSCRingRCRing
4 2 3 sylan R𝑟SSCRingRCRing
5 1 4 impbida R𝑟SRCRingSCRing