Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Restricted iota (description binder)
riotav
Next ⟩
riotauni
Metamath Proof Explorer
Ascii
Unicode
Theorem
riotav
Description:
An iota restricted to the universe is unrestricted.
(Contributed by
NM
, 18-Sep-2011)
Ref
Expression
Assertion
riotav
⊢
ι
x
∈
V
|
φ
=
ι
x
|
φ
Proof
Step
Hyp
Ref
Expression
1
df-riota
⊢
ι
x
∈
V
|
φ
=
ι
x
|
x
∈
V
∧
φ
2
vex
⊢
x
∈
V
3
2
biantrur
⊢
φ
↔
x
∈
V
∧
φ
4
3
iotabii
⊢
ι
x
|
φ
=
ι
x
|
x
∈
V
∧
φ
5
1
4
eqtr4i
⊢
ι
x
∈
V
|
φ
=
ι
x
|
φ