Metamath Proof Explorer


Theorem riotav

Description: An iota restricted to the universe is unrestricted. (Contributed by NM, 18-Sep-2011)

Ref Expression
Assertion riotav ( 𝑥 ∈ V 𝜑 ) = ( ℩ 𝑥 𝜑 )

Proof

Step Hyp Ref Expression
1 df-riota ( 𝑥 ∈ V 𝜑 ) = ( ℩ 𝑥 ( 𝑥 ∈ V ∧ 𝜑 ) )
2 vex 𝑥 ∈ V
3 2 biantrur ( 𝜑 ↔ ( 𝑥 ∈ V ∧ 𝜑 ) )
4 3 iotabii ( ℩ 𝑥 𝜑 ) = ( ℩ 𝑥 ( 𝑥 ∈ V ∧ 𝜑 ) )
5 1 4 eqtr4i ( 𝑥 ∈ V 𝜑 ) = ( ℩ 𝑥 𝜑 )